### The Effect of the WHO FCTC Ratification: An Analysis Using ITSA with Synthetic Control Groups

Presenter: Prof Guillermo Paraje (Universidad Adolfo Ibáñez)

Co-authors: Mauricio Flores Muñoz (UAI), Ignacio Finot (UAI), Luca Pruzzo (UAI), Daphne Wu (University of Toronto) and Prabhat Jha (University of Toronto)



#### Disclosure

We acknowledge funding from the following institutions: the Bill and Melinda Gates Foundation and the Canadian Institutes of Health Research (to P.J.); and the Millennium Nucleus for the Evaluation and Analysis of Drug Policies and Bloomberg Philanthropies (grant no. 2022-110829) (to G.P.).

- Funders did not have any role or participation at any stage of research.
  - None of the authors have conflicts of interest of any kind.

Once published all databases and codes will be publicly available.



- A few studies have assessed the effect of FCTC on smoking outcomes.
- Gravely et al. (2017) studies the number of FCTC's measures implemented at the highest level between 2007 and 2014 and the association with prevalence between 2005 and 2015.
- Results show that an increase in the number of implemented measures is significantly associated with a decrease in prevalence:
  - They do not use control groups, so results cannot be directly attributed to FCTC
  - Studies FCTC's measures, not the treaty itself
  - The study does not consider the implementation of measures pre-FCTC in most countries



- Anderson et al. (2016) studies the trends of policy percentages scores between 2007 and 2014 and the association with prevalence between 2010 and 2015.
- Association between higher policy scores and a decrease in prevalence
  - They do not use control groups, so results cannot be directly attributed to FCTC.
  - Studies policy scores in general, not the FCTC



- Dubray et al. (2014) studies the relationship between 2008 MPOWER composite score and changes in smoking prevalence between 2006 and 2009.
- Countries with higher MPOWER composite scores showed a greater decrease in smoking prevalence
  - They do not use control groups, so results cannot be directly attributed to FCTC.
  - Studies FCTC's measures, not the treaty itself



- Hoffman et al (2019) assess the effect of FCTC using single group ITSA with the per capita cigarette consumption. The study has some important limitations:
  - First, the intervention year is 2003 (most countries ratified in 2005 and 2006) and use around 70 countries (heavily unbalanced set of countries)
  - Second, they use the first differences of the dependent variable (absolute variations, which do not consider the initial level)
  - Third, dependent variable do not consider total consumption but registered consumption. Illicit trade is not considered (which may be endogenous to policy change)

TABACONOMÍA EVIDENCIA ECONÓMICA PARA EL CONTROL DEL TABACO

• Fourth, "long tail" of pre-ratification data (since 1970) which may bias results.

- Paraje et al. (2024) use the log of smokers, the log of the prevalence of smokers for the 10-24 group, and the log of the quit ratio for the 45-59 group. The analysis is for 170 countries by income group (excludes China) using single group ITSA.
- Intervention is the year of ratification of each country, so data is "regrouped" to consider that.
- Results show strong effects, especially in post-intervention trends. The cumulative reduction of young smokers after ten years of ratification is about 24 million. Some limitations:
  - They do not use control groups, so results cannot be directly attributed to FCTC.
  - They use GBD data, which has modelled data. That may be inappropriate to use with ITSA.



- This work extends Paraje et al (2024) by using a synthetic control group with ITSA.
- It also analyses the effect by sex and countries' income groups for the 10-24 population and for the 25 and older population.



#### Data

- Current smoker data between 1990-2020 from the IHME (Institute for Health Metrics and Evaluation), University of Washington
- Data for the population 10 years and older, in 5 years age group by sex
- Countries that don't have 10 years after their ratification were excluded
- For this reason, only countries that ratified between 2005 and 2010 were included, representing 96% of the total population
- Excluded countries: Andorra, Czechia, El Salvador, Ethiopia, Mozambique, Saint Kitts and Nevis, Zimbabwe, Tajikistan, Turkmenistan, Uzbekistan



#### Methods

- Interrupted Time Series Analysis (ITSA) with synthetic control group
- Dynamic intervention point (year of ratification for each country)
- Estimated difference between the treatment and control groups after 10 years of ratification
- Quadratic or lineal effect of treatment is chosen by the Akaike criterion



#### Synthetic control group

- Synthetic control groups formed using lasso (SCUL)
- Donor pool are never-ratifying countries: Argentina, Cuba, Dominican Republic, Eritrea, Haiti, Indonesia, Malawi, Monaco, Morocco, Somalia, South Sudan, Switzerland and the Unites States of Americas
- Countries must be separated by their ratification year because of the dynamic intervention point. Otherwise, no ratification year would be assigned to the donor pool
- Thus, we generate a synthetic control group for each ratification year (from 2005 to 2010).



# Two examples: ratification years 2005, 2006 for 10-24 years



![](_page_11_Figure_2.jpeg)

♦ Countries that Ratified × Synthetic Control

![](_page_11_Picture_4.jpeg)

#### Synthetic Control Group using Lasso

ω

λ

Abadie et al (2010)

$$\widehat{\omega}_{Synth} = \omega(V^*) = \arg\min_{\omega} \left( \sum_{t=1}^{T_0} (y_{0t} - x_t \omega)^2 \right)$$

Hollingsworth and Wing (2020)

$$\widehat{\omega}_{lasso} = \arg \min_{\omega} \left( \sum_{t=1}^{T_0} (y_{0t} - x_t \omega)^2 + \lambda |\omega|_1 \right)$$

Ponderator

**Penalty Parameter** 

![](_page_12_Picture_7.jpeg)

### Example of weighs: Countries ratifying in 2010, population 25+

| Country            | Ponderator | Country                  | Ponderator |  |
|--------------------|------------|--------------------------|------------|--|
| Argentina          | 0.1319359  | Monaco                   | 53.14688   |  |
| Cuba               | -0.002568  | Morocco                  | 0.0471283  |  |
| Dominican Republic | -0.0079379 | Somalia                  | 0          |  |
| Eritrea            | 1.982873   | South Sudan              | 4.294908   |  |
| Haiti              | -0.362093  | Switzerland              | 0.0416102  |  |
| Indonesia          | 0.0776737  | United States of America | -0.0073755 |  |
| Malawi             | 0.0007937  |                          |            |  |

![](_page_13_Picture_2.jpeg)

#### Global population 10-24 years old

![](_page_14_Figure_1.jpeg)

TABACONOMÍA EVIDENCIA ECONÓMICA PARA EL CONTROL DEL TABACO

#### Synthetic control group

- Due to non-linearities (especially in the pre-ratification period) we subtract the treated and control groups, obtaining a single group.
- The group represents the difference in smokers between the treated and the control groups for each year before and after ratification.

![](_page_15_Picture_3.jpeg)

#### Global population 10-24 years old

![](_page_16_Figure_1.jpeg)

TABACONOMÍA EVIDENCIA ECONÓMICA PARA EL CONTROL DEL TABACO Interrupted Time Series Analysis

## • $Y_t = \beta_0 + \beta_1 T_t + \beta_2 X_t + \beta_3 X_t T_t + \beta_4 X_t T_t^2$

131

132

 $\beta_3$ 

 $\beta_4$ 

Dependent variable

 $Y_t$ 

 $T_t$ 

 $X_t$ 

 $X_t T_t$ 

Years since Ratification

Treatment Dummy

Interaction Term

 $\mathcal{B}_{\mathbf{0}}$  Initial intercept

Pre-intervention Trend

Change in Level immediately after intervention

Change in Trend after intervention

TABACONOMÍA EVIDENCIA ECONÓMICA PAR/ EL CONTROL DEL TABACO

![](_page_18_Figure_0.jpeg)

#### World vs Countries that did not Ratify Difference in smokers between treated and control group Compared with counterfactual using Synthetic Control Result of subtracting the series of both groups 160 $\diamond$ 25 Number of million of smokers $\diamond$ Difference in millions of smokers 20 0 $\diamond$ $\diamond$ \* \* \* \* \* $\diamond$ 150 $\diamond$ $\diamond$ 15 $\diamond$ $\diamond$ ۲ $\diamond$ ð $\diamond$ $\diamond$ 10 140 $\diamond$ $\diamond$ $\diamond$ $\diamond$ 5 $\diamond$ $\diamond$ $\diamond$ $\diamond$ <mark>0</mark> \_ \$ 130 $\diamond$ $\diamond \diamond \diamond$ $\diamond$ $\diamond$ -15 -10 -5 0 5 10 -15 -10 -5 5 10 0 Years since Ratification Years since Ratification Countries that Ratified Synthetic Control

Global population 10-24 years old

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

#### Men vs Countries that did not Ratify Compared with counterfactual using Synthetic Control Difference in smokers between treated and control group Result of subtracting the series of both groups 115 $\diamond$ 15 Number of million of smokers Difference in millions of smokers $\diamond$ $\diamond$ $\diamond$ 110 $\diamond$ $\diamond$ ۵ 10 ا $\diamond$ ⊗ $\diamond$ ⊘ ⊘ $\diamond$ $\diamond$ 105 ⊗ $\diamond$ ۲ $\diamond$ $\diamond$ 5 $\diamond$ $\diamond$ $\diamond$ ◊ ◊ $\land$ 100 $^{\circ}$ $\diamond$ $\diamond$ $\diamond$ 0 -15 -10 -5 0 5 10 -15 -10 -5 0 5 10 Years since Ratification Years since Ratification Countries that Ratified \* Synthetic Control

TABACONOMÍA EVIDENCIA ECONÓMICA PARA EL CONTROL DEL TABACO

#### Male population 10-24 years old

#### Female population 10-24 years old

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

#### Results for the population 10-24 years old

|  |                                                       | A 11        | Sex         |            | Income     |             |
|--|-------------------------------------------------------|-------------|-------------|------------|------------|-------------|
|  |                                                       | All         | Male        | Female     | High       | LMIC        |
|  | $eta_0$ : Gap in level                                | 221.77*     | 50.66       | 25.86*     | -120.57**  | 2.96        |
|  | $eta_1$ : Gap in pre-intervention trend               | -36.49      | -8.99       | -4.02      | 17.26 ***  | -0.35       |
|  | $eta_2$ : Gap in immediate change                     | 1064.65**   | 1102.23***  | 32.85      | 565.52 *** | -579.27     |
|  | $eta_3$ : Gap in change in trend post-ratification    | 1447.26***  | 300.22***   | 527.89***  | 113.60***  | 264.78      |
|  | $eta_4$ : Gap in change in trend post-ratification ^2 | 109.71***   | 117.49***   | 30.74***   | 48.98**    | 198.9341*** |
|  | Effect after 10 years                                 | 26,508.1*** | 15,854.3*** | 8,385.3*** | 6,599.8*** | 21,961.9*** |
|  | Average change in trend                               | 2,654.1***  | 1,592.7***  | 865.9***   | 652.4***   | 2,453.1***  |
|  |                                                       |             |             |            |            |             |

TABACONOMÍA EVIDENCIA ECONÓMICA PARA EL CONTROL DEL TABACO

#### Results for the population 10-24 years old

- About 26,5 million fewer smokers after ten years of ratification
- About 15.8 million male and 8,4 million female fewer smokers
- This is equivalent to a reduction of 20%, 16% and 24.8% in current smokers after ten years since ratification, respectively
- About 6.6 million fewer smokers in high-income countries and 22 million fewer smokers in low and middle-income countries
- This is equivalent to a reduction of 26,1% and 20,5% in current smokers after ten years since ratification, respectively

![](_page_23_Picture_6.jpeg)

# Results for the population 25 years and older

|                                           |                  | A 11     | Sex        |           | Income     |           |
|-------------------------------------------|------------------|----------|------------|-----------|------------|-----------|
|                                           |                  | All      | Male       | Female    | High       | LMIC      |
| $eta_0$ : Gap in le                       | vel              | 85.76    | 85.18      | 290.68*** | -1.33      | 13.15     |
| $eta_1$ : Gap in pre-inte                 | rvention         | -12.51   | -12.38     | -41.35*** | 0.42       | -1.89     |
| $eta_2$ : Gap in immedia                  | te change        | 1634.94  | -2072.66** | -337.06** | 1006.59*** | -1304.95  |
| $eta_3$ : Gap in change post-ratificat    | in trend         | 523.19   | 905.76***  | -136.00** | 242.77***  | 926.71*** |
| $eta_4$ : Gap in change post-ratification | in trend<br>n ^2 | 90.99**  | /          | 87.68***  | 113.216*** | /         |
| Effect after 10                           | years 226        | 596.5*** | 6985***    | 7071.3*** | 14756***   | 7962.2*** |
| Average change                            | in trend 2,6     | 524.1*** | 1,592.7*** | 828.5***  | 4,488.2*** | 926.7***  |
|                                           |                  |          |            |           |            |           |

### Results for the population 25 years and older

- About 22.7 million fewer smokers ten years after ratification
- About 7 million male and 7 million female fewer smokers
- This is equivalent to a reduction of 4.2%, 1.7% and 6.1% in current smokers after ten years since ratification, respectively
- About 14.8 million fewer smokers in high-income countries and 8 million fewer smokers in low and middle-income countries smokers
- This is equivalent to a reduction of 10.9% and 2% in current smokers after ten years since ratification, respectively

![](_page_25_Picture_6.jpeg)

#### Questions

- What is the effect of using modelled data?
- Is it reasonable to subtract treated and control groups?

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

#### Preliminary conclusions

- If the countries had not ratified, the global current smoker prevalence would have been about 2 percentage points higher ten years after ratification.
- In terms of sex, that would have been 2.3 and 1.3 percentage points higher for men and women, respectively
- In terms of income groups, that would have been 4.8 and 1.8 for high-income countries and low- and middle-income countries, respectively
- FCTC was successful in controlling the evolution of tobacco users

![](_page_27_Picture_5.jpeg)

Thank you !!!

guillermo.paraje@uai.cl

X: @gparaje

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)